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Let us consider an infinite isotropic plate of thickness 2h, containing a rectilinear 
through cut of length 2~ (Fig. i). The sides of the cut y = • are joined along the edges 
with hinges in one of the faces z = sh (s = -I or s = +i). The faces of the plate and the 
edges of the cut are free of external loads. We study the effect of the cut on the stressed 
state of the plate caused by forces n = const distributed uniformly at infinity.. 

Since the system is asymmetric about the middle of the plane of the plate, a local 
bend should be expected in the proximity of a stress concentrator. Besides the equation of 
the generalized plane stressed state 

AA~ - 0, 

therefore, we also use the equation for the bending of plates in the Kirchhoff theory 

(1) 

AA~ = o ( 2 )  

to describe the elastic equilibrium state of the plate beyond the cut. Here ~ is the Airy 
function, w is the deflection of the plate, and h = 32/8x 2 + 32/3y 2 is the Laplacian. 

For membrane forces and bending moments at infinity we require satisfaction of the con- 
ditions 

N ~ = N ~ y = 0 ,  N y = n ,  M ~ = M ~ u = M ~ = 0 ,  z ~+y~- - , -~ .  (3) 

Taking into account the symmetry of the problem about the x axis, we consider the boun- 
dary conditions at the cut. 

In any cross section x = const e (-s s (Fig. 2), besides the opening of the cut [v], 
a jump in the angle of rotation of the normal [~y] appears in the middle of the plate sur- 
face. Here~y= 8w/By, [f] = f(x, +0) - f(x, -0). Following the hypotheses of Kirchhoff 
about a rigid normal element, from the conditions of continuity of the elastic displacements 
at the joined edges we obtain 

[ v ] - - s h [ % l = O ,  x ~  ( - - l ,  l), 

and at the ends of the cut we have 

(4) 

[v ] (~ l )  = O, [ f fy](~/ )  = O. ( 5 )  

The static diagram of the contact is shown in Fig. 3. We replace the unknown reaction 
R of the hinge with an equivalent system: membrane forces Ny = R and bending moments My = 
shR. Eliminating R, we arrive at the condition 

M y  - -  s h N y  = O, y = O, x ~ ( - - l ,  l). ( 6 )  

Moreover, tangential and generalized shearing forces do not exist at the cut, i.e., 

N~:u=O, Q$=O, y=O, x~(--l,I). (7) 

We construct the solution of the problem (1)-(7) by using the method of integral equa- 
tions. The general solution of Eqs. (i) and (2), satisfying conditions (3) and (7), is 
written as [i] 

l 

(p (x, y) = ~o (x, y) + - ~ -  Iv] (~) 2 in r + 1 + 2 - 7  d~, 
- - l  
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w ( x , y )  ~ [ e j  (~) 2 ( i  + w)]nr + i + 3~ + 2 ( i - -  v)VY2 ~ d~, (8)  
-z 7 ]  

where ~0 (x ,  y)  = ny2 /2  i s  a f u n c t i o n  o f  t h e  s t r e s s e s  in t h e  t e n s i o n e d  p l a t e  w i t h o u t  a c u t ,  
r = ] / ( x - - ~ ) 2 4 - y 2  B = 2Eh, and E and ~ a r e  Y o u n g ' s  modulus and P o i s s o n ' s  r a t i o  o f  t h e  m a t e r -  
i a l  of the plate. 

The integral representations, corresponding to Eqs. (8), of the normal forces and mo- 
ments on the line of the cut in terms of the derivatives of unknown functions of the jump 
are given by the formulas. 

l 

N~ (z, 0) = n + [ f~  [v]'(~) ~ _  x, 
- - l  

z ( 9 )  
D f 3 -- 2v -- x,2 My (x, �9 o) : -- ~- ~ [~ j ' (~ )  ~ _  d~ 

- - l  

where D = 2Eh3 / (3 (1  - v2 ) )  i s  t h e  c y l i n d r i c a l  r i g i d i t y  o f  t h e  p l a t e .  

S u b s t i t u t i n g  Eq. (9)  i n t o  t h e  boundary  c o n d i t i o n  (6)  and e l i m i n a t i n g  f u n c t i o n  [%y] by 
means o f  Eq. ( 4 ) ,  we a r r i v e  a t  t h e  i n t e g r o d i f f e r e n t i a l  e q u a t i o n .  

Iv] 
[~v] = (4snh /~-~-~) /[D(3 - 2~ - ~2)(i + ~)], and the unknown reactions at the cut are 
found from Eqs. (9): 

Ny(z, O) = n/(i + z),  M ~  0) = snh/(l + z),  x ~ (--1,  I). 

From t h e  known jumps of  t h e  d i s p l a c e m e n t s  and t he  a n g l e  o f  r o t a t i o n  o f  t h e  normal  we 
can d e t e r m i n e  t h e  s t r e s s - - s t r a i n  s t a t e  o f  t he  p l a t e  ove r  t h e  e n t i r e  r e g i o n  on t h e  b a s i s  o f  
r e p r e s e n t a t i o n s  ( 8 ) .  

We p o i n t  ou t  one p o s s i b l e  a p p l i c a t i o n  o f  t h e  r e s u l t s .  The scheme d e s c r i b e d  h e r e  s imu- 
l a t e s  t h e  p rob lem of  t e n s i o n  of  a p l a t e  w i t h  a c u t ,  c o v e r e d  on one s i d e  w i t h  a f l e x i b l e  f i l m  
t h a t  de forms  a l o n g  w i t h  t h e  p l a t e .  Le t  us a s s e s s  how the  h i n g e d  c o u p l i n g  o f  t h e  edges  o f  
t h e  c u t  a f f e c t s  t h e  b e a r i n g  c a p a c i t y  o f  t h e  p l a t e ,  b a s i n g  o u r s e l v e s  on t h e  e n e r g y  c o n c e p t  o f  
l i n e a r  f r a c t u r e  m e c h a n i c s .  

l 

4= =-n, 0 (i0) 
--l 

The s o l u t i o n  o f  Eq. ( 1 0 ) ,  which s a t i s f i e s  t h e  f i r s t  c o n d i t i o n  (5)  i s  g e n e r a l l y  known: 
= (4n< ~ - - x  ~) / [ B ( 1  + K)] .  The jump in  t h e  a n g l e  o f  r o t a t i o n  i s  d e t e r m i n e d  from Eq. ( 4 ) ,  
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The intensity factors of the forces and moments [2] in the neighborhood of the ends 
of the cut are calculated from the formulas 

B z n l /"~ ,  K 3  = ( 3  - -  2 v  - -  v e) D ._ lira ] / ~ - -  m ~ [ 0 y ] '  = s,~h]/7 ( 11 ) K1 = 41/l  limV~--x2[v]'x~z l ~ •  4 ] / l  x~z l + • " 

The e x p r e s s i o n  f o r  t h e  e n e r g y  f l u x  t o  t h e  c r a c k  t i p  u n d e r  combined  t e n s i o n  and b e n d i n g  
has the form [3] G = ~/4h2E{Kl 2 + K(Ks/h)2}. Assuming that as the crack grows the film and 
the adhesive bond remain undamaged, on the basis of Eqs. (ii) we find G = ~n2/4h2E x </(i + 
K). We note that in the absence of a film K[ = n~/l, K~ = 0, andG' = ~n2/(4h2E). 

In summary, the application of a flexible reinforcement to one face of a tensioned 
plate with a crack, within the framework of the formulation under consideration here, causes 
the energy flux to decrease by a factor of G'/G = (K + i)/~ and the bearing capacity of the 
plate to increase by a factor of V(• ~ i)/x = 1.33-1.41. 
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